Виктор Егель

Страница 3 из 612345...Последняя »

Электрический щиток для гаража

Электрический щиток для гаража или домашней мастерской.


  В моем гараже установлен электрический щиток для включения – выключения входящей сети и электрических нагрузок. Вхема включения и внешний вид щитка хорошо просматриваются на рисунке.

    Двух полюсным разъединителем Р1 можно полностью выключать входящую электрическую сеть и работать на самом щитке и на его шинах, по включению – выключению проводов.
Это очень удобно т.к. все провода и шины электрического щитка оказываются обесточены. При этом в розетке, на панели электрического щитка, остается напряжение для питания аварийного освещения. 

    Все детали электрического щитка установлены на панели из эбонита, текстолита или другого изоляционного материала (можно из сухой доски пропитанной олифой и покрашенной краской).

    Размер панели электрического щитка зависит от размеров найденных деталей. У меня уместилось в размер 20 х 40 сантиметров. 

    Р1 — двухполюсный разъединитель с аварийной защитой на 50 ампер. Он служит для полного отключения от сети (фазы и нуля) при монтаже или ремонте электрической проводки.

   Р2 и Р3 двухполюсные разъединители с аварийной защитой на 25 ампер, служат для отключения нагрузок.

   Так как кабели, отходящие от разъединителей, грубые и выполнены толстым проводом, пришлось ввести дополнительные переходные клеммы.

   Посередине панели электрического щитка, на изоляционной прокладке, расположены две алюминиевые или медные шины — фаза и ноль.

    Розетка включена через предохранитель Пр. на 5 ампер, напрямую к сети до разъединителя Р1.
На шинах и клеммниках все соединения выполнены на болтах и гайках.

Как изготовить трансформатор на П — образном сердечнике

 Как изготовить трансформатор на П — образном сердечнике




Данная статья является продолжением статей:

«Как рассчитать трансформатор 220/36 вольт»;
«Как изготовить каркас для Ш – образного сердечника»;
 "Как намотать трансформатор на Ш-образном сердечнике".

   Маломощные, однофазные силовые трансформаторы (до 100 ватт), обычно изготавливают трех видов: – Ш – образные, П – образные и намотанные на тороиде.
Тороидальные трансформаторы изготавливают очень редко, хотя они и являются самыми эффективными.
  У тороидальных трансформаторов наименьшие поля рассеивания, наименьшие потери в сердечнике, высокий КПД и т.д.  Однако изготовление их очень хлопотно – все работы по намотке провода проводятся вручную.
    Наиболее распространенные виды трансформаторов изготавливаются на Ш –образном и П – образном сердечниках.
    Как изготовить силовой трансформатор на Ш – образном сердечнике смотрите в статье «Как намотать трансформатор на Ш-образном сердечнике?».
 Силовой трансформатор на П — образном сердечнике немного отличается от Ш — образного трансформатора:

  • магнитопровод имеет П-образные стальные пластины и пластину перекрытия или сердечник напоминающий по форме букву О, намотанный из стальной ленты и разрезанный пополам;
  • имеет, как правило, два симметрично расположенных каркаса с обмотками первичной и вторичной;
  • конструкции каркаса с расположенными на нем обмотками одинаковы .

   Силовые трансформаторы на старых ламповых телевизорах все были изготовлены такой конструкции и на мой взгляд, их проще изготовить, чем Ш — образный трансформатор.

   Особенностью работы любого трансформатора является процесс преобразования электрической энергии переменного тока в переменное магнитное поле и наоборот. Поочередный обмен электрической и магнитной энергией происходит между катушками первичной и вторичной обмоток и сердечником магнитопровода.    Пространство между витками обмоток и обмотками, обладает очень малой магнитной проницаемостью и большим магнитным сопротивлением, а потому почти весь магнитный поток сосредоточен в магнитопроводе. Стальной магнитопровод обладает в тысячи раз меньшим магнитным сопротивлением, чем воздух и окружающая среда.
  Чтобы передать электрическую энергию из первичной обмотки трансформатора во вторичную обмотку с наименьшими потерями, необходимо соблюдать следующие условия:

  • расстояние между витками в обмотке и между обмотками должно быть минимально;
  • средняя длина магнитно-силовой линии в магнитопроводе должна быть наименьшей;
  • возможно большая поверхность магнитопровода должна быть охвачена витками обмоток;
  • витки первичной и вторичной обмоток рекомендуется перемежать между собой.

   Не рекомендуется разносить первичную и вторичную обмотки на каркасе, а тем более по разные стороны сердечника. Чем больше разнесены обмотки друг от друга на сердечнике магнитопровода, тем больше потери магнитной энергии на магнитном сопротивлении магнитопровода.
    Все эти условия удачно сочетаются и в трансформаторе с П – образным сердечником.
Расчет П – образного трансформатора ничем не отличается от расчета Ш – образного.

    Приведенный расчет трансформатора в статье «Как рассчитать трансформатор 220/36 вольт», полностью подходит и для нашего случая.

   Попробуем изготовить этот трансформатор на магнитопроводе с П – образным сердечником.

  Общее количество витков обмоток, диаметр провода, поперечное сечение магнитопровода — идентичны.

Параметры трансформатора из статьи:

  •  мощность 75 ватт;
  •  площадь сечения магнитопровода 10 см.кв.;
  •  число витков первичной обмотки 1056 витков;
  •  число витков вторичной обмотки 180 витков;
  •  диаметр провода первичной обмотки 0,5 мм.;
  •  диаметр провода вторичной обмотки 1,1 мм.;
  •  выходное напряжение 36 вольт.

   Рассмотрим схему включения трансформатора и его обмоток.

    Особенность изготовления трансформатора  на П — образном сердечнике  состоит в том, что витки первичной и вторичной обмотки, разделены пополам и наматываются на двух каркасах. На каждом каркасе мотается половина первичной и половина вторичной обмотки. Оба каркаса мотаются совершенно одинаково с отводами на щечках.

  На одном каркасе наматывается ½ первичной обмотки – 528 витков, проводом диаметром 0,5 мм. с обозначением концов а и б.
    Затем наносим слой межобмоточной изоляции и ½ вторичной обмотки – 90 витков, проводом диаметром 1,1 мм. с обозначением концов А и Б.

    На втором каркасе наматываются вторые половины первичной (528 витков, концы а1 и б1) и вторичной (90 витков, концы А1 и Б1) обмоток.
    После сборки трансформатора соединяем концы первичной и вторичной обмоток.
Обратите особое внимание при соединении двух половинок первичной обмотки, они должны быть включены синфазно.

    Собираем простую схему для проверки правильного включения обмоток.
От другого трансформатора на 220 вольт возьмем любое напряжение U равное или меньше 110 вольт и подключим его к одной половинке первичной обмотки (концы а и б). На другом каркасе, на другой половинке первичной обмотки (концы а1 и б1) должно быть такое же напряжение U, как на первом каркасе между а и б.
     Теперь конец обмотки б соединим с концом а1 и измерим напряжение между точками а и б1. Напряжение должно быть равно 2 U.
Если этого не произошло, то разъединим точки б и а1 и соединим, точки б и б1. Измерим напряжение между точками а и а1. Оно должно быть равно 2 U.

К этим точкам обмоток и будет подключаться входное переменное напряжение 220 вольт.

  Разумеется, все переключения проводятся при выключенном питании из сети 220 вольт.

Допустим, последний случай соединения был успешным и напряжение между точками а и а1 удвоилось, т.е. равно 2 U.
    Далее, через предохранитель на 1 ампер, подсоединяем полностью первичную обмотку к сети 220 вольт. Трансформатор должен заработать.

  Вторичное напряжение на концах А — Б и А1 — Б1 должно быть по 18 вольт.
 Две половинки вторичных обмоток так же фазируются.
Общее напряжение, при соединении двух половинок вторичных обмоток.  должно быть 36 вольт.
Подключим нагрузку в виде лампочки на соответствующее, в нашем случае 36 вольт, напряжение. Если все соединения произведены правильно — лампочка загорится.

   Таковы особенности изготовления трансформатора на П — образном сердечнике. 


Двухполупериодная схема выпрямителя

Двухполупериодная схема выпрямителя.



style="display:inline-block;width:468px;height:60px"
data-ad-client="ca-pub-5076466341839286"
data-ad-slot="8969066382">


   Самая простая двух-полупериодная схема выпрямления переменного тока получается из двух однополупериодных схем.  

    Вторичная обмотка трансформатора состоит из двух одинаковых обмоток II и III, каждая из которых выдает нужное переменное напряжение Uвых.
Через диоды проходит только положительная полуволна синусоидального переменного тока.

   Работает поочередно или обмотка II и диод VD1, или обмотка III и диод VD2. Средняя величина тока проходящего через каждую обмотку и диод, в двухполупериодном выпрямителе, равна половине выходного тока выпрямителя. В этом случае обмотки можно мотать проводом с вдвое меньшим сечением и применять диоды с меньшим допустимым током.

   Такие схемы двухполупериодного выпрямления предпочтительны тогда, когда на выходе выпрямителя нужно получить большой ток (5 — 10 ампер и более) при небольших напряжениях (5 – 20 вольт).
    Желательно применять германиевые диоды (на них меньше падение напряжения, чем на кремниевых диодах) они меньше греются. Мощные диоды, при больших токах нагрузки, нужно обязательно ставить на радиатор.
    При таком способе включения, оба диода можно ставить на один радиатор, так как аноды (плюсы) их имеют вывод на корпус, под гайку. Конструктивно это очень удобно. Два диода и радиатор составляют одну конструкцию и ее ставят на одну изолирующую подставку.
    Форма выходного напряжения двухполупериодного выпрямителя представляет собой пульсирующее напряжение: полусинусоиды положительной и, перевернутой вверх, полусинусоиды отрицательной.

   На рисунках приведены варианты таких схем получения, на выходе выпрямителя, выходного напряжения положительной (рис. 1) или отрицательной (рис. 2) полярности относительно корпуса.

   Достоинства такой схемы двухполупериодного выпрямления против одно полупериодной схемы:

— трансформатор работает без токов подмагничивания;

— частота пульсаций на выходе выпрямителя f = 100 герц;

 - коэффициент пульсаций существенно меньше.

Недостатки такой схемы:

  •    - обратное напряжение на каждом диоде превышает выходное напряжение выпрямителя Uвых. в два раза (напряжение обоих обмоток складывается).

   В случае, если нет возможности достать диоды на рассчитываемый ток, можно включать их параллельно по два, а то и по три в каждом плече, как на рисунке 3.


    В этой схеме все диоды можно ставить на один радиатор, без изоляционных прокладок. Резисторы ставятся для того, чтобы уравнять внутренние «тепловые» сопротивления диодов.
    Резисторы должны быть равны между собой и иметь величину соответствующую динамическому сопротивлению диода — от 0,2 до 1 Ом, и мощность 1 ватт и более.
    Недостаток схемы:  – большая потеря мощности на резисторах.

   Разберем на примере применение данных схем.
Пусть нам нужно построить выпрямитель на напряжение 12 вольт и номинальный ток до 15 ампер.

    Рассмотрим сначала схему на рис. 1. Каждая вторичная обмотка трансформатора (обмотки II и III) должна быть рассчитана на переменное напряжение 13 – 14 вольт, с учетом падения напряжения на самой обмотке и самом сопротивлении диода.

Эти обмотки включаются последовательно – конец обмотки II с началом обмотки III. Средняя точка – общий, минусовой вывод. Два диода соединенные анодами вместе – это плюсовой вывод.


    Выходной ток двухполупериодного выпрямителя состоит из двух полуволн. Каждая из полуволн, за один период проходит сначала по одной половинке и диоду, затем по второй и диоду и имеет величину по 15 ампер. После диодов они сливаются вместе и имеют во времени форму пульсирующего напряжения.
    В каждой паре (обмотка и диод) ток, в течении одного периода, половину периода идет, половину периода не идет. Электрическая мощность, проходящая по каждой паре (обмотка — диод) в течение периода, равна половине общей мощности за это время. А следовательно, средний ток через каждую пару (обмотка — диод) равен, как бы, половине общего тока.
    Сечение провода вторичных обмоток и максимально допустимый ток диодов так же подбирается из этого расчета.
    Из этого следует, что в нашем примере сечение провода вторичных обмоток может быть рассчитано на ток в 7,5 ампер, то есть в два раза меньше. Диоды подбираются на ток до 10 ампер (всегда берутся с запасом), а не 7,5 ампер.
    Те же самые рекомендации по сечению провода относятся к схеме на рис. 2 и рис.3.

   Пример на схеме рис.3 относится к случаю, когда у нас нет в наличии диодов рассчитанных на ток 10 ампер, а есть диоды на 5 ампер. В этом случае ставим 4 диода: в «плечо» по два диода в параллель.Через каждый диод будет протекать ток  15 : 4 = 3,75 ампера.
    Определим величину омического сопротивления резисторов R1 – R4. Падение напряжения на диоде, при протекании через него максимального тока, равно около Uд = 1,0 вольта. Его динамическое сопротивление при токе I = 3,75 ампер будет примерно равно:

R = Uд : I = 1,0 : 3,75 = 0,266 Ом.
 Сопротивление каждого из резисторов R1 – R4 должно быть 1 – 2 Uд = 0,26 – 0,5 Ома.R1 – R4 д
При резисторе R = (0,26 — 0,5) Ома падение напряжения на нем будет:
   U = R х I = (0,26 — 0,5) х 3,75 = от 0,975 до 1,875 вольта.
    Электрическая мощность выделяемая на каждом резисторе равна:
   P = I х U = 3,75 (0,95 – 1,875) = от 3,56 до 7,03 ватта.

Такие резисторы изготавливают из толстого высокоомного провода, рассчитанного на ток 3,75 ампер и сильное выделение тепла.

   Это довольно существенная потеря мощности на резисторах.
 Такова расплата за использование не соответствующих току диодов.
     Если же не ставить эти уравнительные резисторы, одни диоды будут работать с перегрузкой и сильно греться (тепловой пробой), другие будут работать с малыми токами.


style="display:inline-block;width:468px;height:60px"
data-ad-client="ca-pub-5076466341839286"
data-ad-slot="8969066382">

Однополупериодные выпрямители

Однополупериодные выпрямители.



   Однополупериодная схема получения постоянного напряжения из переменного – самая простая. Она состоит из трансформатора, выходная обмотка которого рассчитывается на необходимое напряжение и одного выпрямительного диода.
Во вторичной обмотке трансформатора имеем переменное синусоидальное напряжение. После прохождения тока через диод во вторичной обмотке пропускается только положительная полуволна напряжения. Отрицательная полуволна не проходит.
На нагрузочном резисторе R выделяется пульсирующее напряжение как на графике.

Добавим электролитический конденсатор параллельно нагрузке R.

   В период действия положительной полуволны переменного напряжения, конденсатор заряжается до амплитудного значения. В период паузы между положительными полуволнами, конденсатор постепенно разряжается до величины , зависящей от сопротивления нагрузки.

   Чем больше нагрузка (меньше сопротивление R), тем больше величина пульсаций напряжения. Частота пульсаций выходного постоянного напряжения равна f = 50 герц.

Схема однополупериодного выпрямителя применяется очень редко, только в маломощных выпрямителях, или когда высокой пульсацией выходного напряжения можно пренебречь. Трансформатор работает с большим током подмагничивания. КПД выпрямителя небольшой.

   Если к этой схеме однополупериодного выпрямителя  добавить еще один диод и конденсатор, можно получить двух полярный  однополупериодный выпрямитель  с общей точкой. 

    Схема очень удобна тем, что от одной вторичной обмотки можно получить два разно полярных напряжения относительно общей точки.

   Еще один способ применения данной схемы однополупериодного выпрямителя. Это схема — простой удвоитель постоянного напряжения.

   Например, если нам необходимо получить постоянное напряжение 12 вольт, а используемый нами трансформатор имеет обмотку только на 6 вольт. Дополнительную обмотку мотать не хочется. В таком случае, применив удвоитель напряжения, получим 12 вольт.


  Если применить электролитические конденсаторы на 100 – 500 микрофарад, можно при токах до 100 – 150 миллиампер получить довольно малый коэффициент пульсаций.
 Такая схема получения двух полярного напряжения довольно часто применяется.

Трансформаторные или импульсные преобразователи напряжений и токов

 

Трансформаторные или импульсные преобразователи напряжения и тока. Что лучше?



style="display:inline-block;width:728px;height:90px"
data-ad-client="ca-pub-5076466341839286"
data-ad-slot="4818068385">

   Существует много различных схем выпрямителей — преобразователей напряжений и токов. Они предназначены для преобразования переменного напряжения синусоидальной или прямоугольной формы, сначала в пульсирующее напряжение, а затем в постоянное напряжение заданной величины.
    В зависимости от назначения выпрямителя, его необходимой мощности, от параметров, предъявляемых к выходному напряжению, выбираются рабочие схемы выпрямителей — приобразователей напряжений.
    Они могут быть как очень простыми и содержать минимум деталей, так и довольно сложными и содержать электронные схемы управления процессом выпрямления и стабилизации выпрямленного напряжения.
    В быту, при изготовлении домашних самоделок, используются в основном выпрямители, преобразующие переменное напряжение бытовой сети 220 вольт в любое постоянное напряжение.

   Раньше, да и сейчас тоже, получение постоянного напряжения любой величины из переменного напряжения бытовой сети 220 вольт, осуществлялось по классической схеме.

   Последовательность преобразования:
 — бытовая сеть переменного напряжения 220 вольт 50 герц,
– трансформатор, преобразующий его в переменное напряжение другой величины той же частоты,
– выпрямительные диоды, преобразующие переменное напряжение в пульсирующее напряжение той же величины ,
– низкочастотный фильтр, состоящий из емкости и индуктивности, далее, если необходимо,
 — стабилизатор напряжения.
    На выходе всей этой длинной цепи получается постоянное напряжение заданной величины.

Преимущество схемы:
 — простота конструкции,
 — используются недорогие детали,
 — большой запас надежности при аварийной ситуации.

Недостатки схемы:
 — большой вес и габариты трансформатора, дросселя и конденсаторов, а в целом и всего выпрямителя;
 — низкий КПД, не превышающий 60%.

На рисунке простейшая схема выпрямителя — преобразователя напряжения с простым стабилизатором напряжения.

   Здесь на выходе трансформатора полученное низкое переменное напряжение выпрямляется диодным мостом. Получается пульсирующее напряжение, которое с помощью конденсатора сглаживается. Затем это напряжение стабилизируется транзисторным стабилизатором.

    В настоящее время повсеместно внедряется другая схема выпрямителя — преобразователя  напряжений — импульсный блок питания ИБП.

   Последовательность преобразования:
 — бытовая сеть переменного напряжения 220 вольт ,
– выпрямительные диоды и конденсатор. Получается постоянное напряжение, величиной в 310 вольт. Далее, с помощью генератора, работающего на частоте 15 – 150 килогерц, это постоянное напряжение преобразуется в переменное напряжение прямоугольной формы.

   С помощью ферритового трансформатора, трансформируется в необходимое переменное напряжение прямоугольной формы.
    Это переменное прямоугольное напряжение выпрямляется с помощью диодного мостика, фильтруется конденсатором и индуктивностью.
 На выходе получается постоянное напряжение заданной величины.

Преимущества схемы:
 — небольшие габаритные размеры деталей и в целом всего выпрямителя;
 — высокий КПД, доходящий до 90%;

Недостатки схемы:
 — дорогие комплектующие детали (транзисторы, конденсаторы, феррит);
 — из-за низкой надежности при аварии, необходимость применять сложные схемы защиты;
 — сильные электромагнитные поля излучения.

   На рисунке простая схема выпрямителя — преобразователя напряжения -  импульсного блока питания, ИБП, без цепей управления переключением транзисторов.

 Такая схема импульсного блока питания, и ей подобные,  это уже настоящая реальность...



style="display:inline-block;width:728px;height:90px"
data-ad-client="ca-pub-5076466341839286"
data-ad-slot="4818068385">

Как перемотать трансформатор?

Как перемотать трансформатор?

Приложение к статье: «Как рассчитать трансформатор 220/36 вольт.»


    Если у вас есть силовой трансформатор с подходящим (в данном случае S = 10,4 см²) по мощности сечением сердечника, но его вторичная обмотка рассчитана на другое напряжение, можно перемотать трансформатор.

   В этом случае можно не проводить такую трудоемкую работу, как намотка многовитковой первичной обмотки, а использовать уже готовую, старую первичную обмотку.

   Определяем расположение первичной и вторичной обмоток на каркасе. Первичная обмотка обычно располагается на каркасе ближе к сердечнику и намотана тонким проводом с большим количеством витков.
    Далее нужно определить количество витков на вольт w для этого стального сердечника. Использовать ранее рассчитанное, для предыдущей статьи, значение количества витков на вольт, нельзя.
    Включим трансформатор в сеть 220 вольт. Измерим напряжение на всех вторичных обмотках. Выберем обмотку с наименьшим напряжением. Например, оно будет равно U = 30 вольт. Отметим ее расположение на каркасе.
    Далее нужно разобрать трансформатор, вынув пластины сердечника, освободить каркас. Нужно перемотать трансформатор, смотать старую вторичную (или вторичные, если их несколько) обмотку и посчитать количество витков в выбранной обмотке.
    Оставляем только первичную обмотку и межобмоточную изоляцию.
Допустим, количество витков в выбранной обмотке будет n = 140.

Тогда количество витков на один вольт w для этого трансформатора будет:

w = n : U = 140 : 30 = 4,67 витка.

   Если вторичной обмотки совсем нет, или нет возможности ее посчитать, поступим другим способом.
    Намотаем поверх первичной обмотки 100 витков изолированного провода любого диаметра – это «измерительная» обмотка.
Снова соберем трансформатор, включим в сеть 220 вольт и измерим вольтметром напряжение на «измерительной» обмотке. Допустим, оно будет 21,5 вольта.

   Посчитаем количество витков на 1 вольт для этого трансформатора:
w = n : U = 100 : 21,5 = 4,65 витка.
Тогда количество витков в новой вторичной обмотке на 36 вольт будет:

U_2 = 36 • 4,65 = 167,8 витка. Округлим до 170 витков.
«Измерительную» обмотку следует снять и намотать свою, соответствующего диаметра, проводом.

    Подобный способ использования готовой первичной обмотки трансформатора можно применять в любом случае и на любое напряжение и мощность нагрузки.
Количество витков на один вольт w будет каждый раз другим.

Как намотать трансформатор на Ш-образном сердечнике?

 

 Как намотать трансформатор на Ш-образном сердечнике?

Настоящая статья является продолжением статей:

«Как рассчитать силовой трансформатор»;
«Как изготовить каркас для Ш – образного сердечника.»



Намотку обмоток каркаса трансформатора на Ш-образном сердечнике,  нужно производить на намоточном станке, оборудованном счетчиком оборотов и специальным приспособлением для крепления каркаса и бабины с проводом. Но, как правило, под рукой такого станка нет.

   Используем для намотки обычную ручную дрель. Перед намоткой нужно снять и одеть каркас на оправку несколько раз, чтобы каркас свободнее сидел на оправке. Далее вновь одеваем каркас на оправку, подкрепляем его двумя фанерными дощечками(дощечки нужны для того, чтобы щечки каркаса при намотке провода не распирало в стороны), стягиваем болтом или шпилькой и закрепляем в патроне ручной дрели.  Дрель нужно закрепить в настольные тиски.

   Нужно рассчитать  передаточное число оборотов патрона и ручки дрели. Для этого посчитаем количество оборотов патрона дрели на один оборот ручки. Или, если есть возможность, посчитать количество зубьев на обоих шестернях. Соотношение их количества и даст коэффициент пересчета n.

    Например: количество зубьев на шестерне ручки 35 шт., количество зубьев на патроне – 7 шт., тогда коэффициент n = 35 / 7 = 5.  При одном обороте ручки дрели на каркас наматывается 5 витков провода. 

    При намотке каркаса трансформатора на Ш-образном сердечнике,  нужно считать не количество оборотов патрона, а количество оборотов ручки дрели, что значительно проще и удобнее. Определим количество оборотов ручки для сетевой первичной обмотки. 
 K = 1050/5 = 210 оборотов.
Чтоб намотать первичную обмотку нужно сделать 210 оборотов ручки дрели. 

   Один практический совет: чтоб не сбиться со счета числа оборотов  при намотке катушки, после каждых 10 оборотов ручки дрели, где нибудь на бумаге нужно  делать отметку — галочку.
Отсчитал количество галочек равное 21 — вот и готова первичная обмотка.

  В щечке каркаса необходимо сделать отверстие для выхода провода. Отверстие делается шилом в щечке, которая выходит наружу трансформатора.
Эмалированный провод обмотки с помощью пайки соединяется с многожильным проводом. Место соединения прикрывается кусочком плотной бумаги как на рисунке…

    Намотку катушек трансформатора на Ш-образном сердечнике, лучше всего (очень рекомендую) проводить виток к витку, прокладывая между слоями конденсаторную бумагу, для изоляции между слоями.

 

Ширина конденсаторной бумаги на 4-5 мм должна быть шире, чем расстояние между щечками каркаса и иметь надрезы по всей длине, как на рисунке….
Причина увеличения ширины бумаги такова: при намотке витки провода прижимают бумагу, она деформируется и сужается в размере. Оголяются витки нижнего слоя, возможен межвитковый пробой между слоями.  

   Намотав первичную обмотку и выведя конец многожильным проводом, прокладывают 2-3 слоя бумаги или лакоткани (межобмоточная изоляция), чтобы  предохранить от случайного соприкосновения провода сетевой обмотки с проводами выходной обмотки.

   Мотать вторичную обмотку с применением дрели   не удобно, т.к. провод вторичной обмотки толстый – диаметром 1 мм... Лучше всего вторичную обмотку мотать вручную, вынув заготовку с каркасом из патрона дрели.

   Вторичная обмотка также мотается виток к витку с прокладкой бумажной полосы (такой же как и у первичной обмотки) между слоями. Количество витков вторичной обмотки на 36 вольт будет 180 витков.

   Концы вторичной обмотки выводятся из каркаса самим проводом, без спайки с многожильным проводом.  Можно только, для прочности,  надеть на провод тонкую хлорвиниловую трубку.

    После намотки вторичной обмотки снова прокладываются 2-3 слоя плотной бумаги для защиты провода от внешних повреждений. Затем готовый каркас с обмотками осторожно снимают с оправки, стараясь не повредить. 

    Затем собираем трансформатор полностью, вставляем пластины магнитопровода вперекрышку, с разных сторон каркаса. Сначала собираем без пластин — перемычек, так удобнее. После того как все Ш-образные пластины вставлены, вставляем пластины — перемычки. 

   Легкими постукиваниями молотка по торцам, подравниваем пластины на ровной площадке. Затем весь магнитопровод необходимо стянуть болтами-шпильками или обжать уголками с крепежными отверстиями. 

Вот наконец и добрались мы до интересного момента – пуска своего творения — трансформатора на Ш-образном сердечнике  в электрическую сеть. 

   Для испытания трансформатора подключим сетевой провод с вилкой (через предохранитель на 1 ампер) к первичной обмотке трансформатора.

    Вольтметром переменного тока нужно проверить наличие напряжения на вторичной обмотке трансформатора.  Оно должно быть 35 — 37 вольт.

    Если все работы выполнены  правильно, то по истечении 5-10 минут работы, трансформатор не должен нагреться.  После подсоединения лампочки на 36 вольт напряжение может просесть до 33-35 вольт, это нормально.

 

Как изготовить каркас для трансформатора на Ш – образном сердечнике

 Как изготовить каркас для трансформатора на Ш – образном сердечнике.



 Изготовим каркас  трансформатора для статьи«Как рассчитать силовой трансформатор»

   Для уменьшения потерь на вихревые токи, сердечники трансформатора набираются из пластин штампованных из электротехнической стали. В маломощных трансформаторах чаще всего применяются «броневые»  или Ш – образные сердечники. 

   Обмотки трансформатора находятся на каркасе. Каркас для Ш-образного сердечника, располагается на центральном стержне, что упрощает конструкцию, позволяет лучше использовать площадь окна и частично создает защиту обмоток от механических воздействий. Отсюда и название трансформатора — ,,броневой,,..

   Для сборки броневых сердечников используются пластины Ш – образной формы и перемычки к ним. Для устранения зазора между пластинами и перемычками, сердечник собирается ,,вперекрышку,,. 

   Площадь сечения Ш-образного сердечника S, есть произведение ширины центрального стержня на толщину набора пластин (в сантиметрах). Подходящие пластины для сердечника нужно подобрать.

Для примера, из статьи «Как рассчитать трансформатор 220/36 вольт»:

 - мощность трансформатора Р = 75 ватт;
— площадь сечения магнитопровода S = 10 см.кв = 1000 мм.кв.

   Под такое сечение магнитопровода выбираем пластины:

ширина b = 26 мм.,
— высота окна пластины c = 47 мм,
— ширина окна – 17 мм.,

 Если есть пластины другого размера, можно использовать и их.

Tолщина набора пакета пластин будет:

 S : 26 = 1000 : 26 = 38,46.     Примем:  a = 38,5 мм

    Есть много способов изготовления каркасов для Ш-обраного серденика из разных материалов: электрокартон, прессшпан, текстолит и т.д. Иногда применяется бескаркасная намотка. Для маломощных трансформаторов до 100 вт. неплохо получаются каркасы склеенные из картона и бумаги. 

Изготовление каркаса.

  Изготавливаем заготовку под каркас из деревянного бруска с размерами:
 a + 1 = 39 + 1 = 40 мм.;
b + 1 = 26 + 1 = 27 мм.;
c = 47 мм
.
B размеры а и b добавлено  по 1 мм. чтоб каркас входил в набор пластин сердечника свободно. 

   Каркас для Ш-образного сердечника клеим из картона толщиной 0,5 мм., вырезаем полоску шириной 47 мм. и длиной примерно 300 мм., чтоб хватило на два оборота вокруг заготовки. Изготовим такую же полоску из обыкновенной (можно газетной) бумаги. Приготовим также бумажный (силикатный) клей.

    Обожмем картонную полоску вокруг деревянного бруска 1 оборот, затем, проклеивая, второй оборот. За половину оборота до конца картонной полоски добавляется бумажная лента и  далее  все проклеивается вместе, картонная и бумажная ленты.

    Необходимо, чтобы все эти, картонная и бумажная, ленты были плотно скручены вокруг оправки, а края полосок не выходили за рамки бортов. 

   Дать каркасу немного просохнуть, минут 30, а затем осторожно снять с оправки. Еще минут 30 просушить и осторожно  снять и надеть на оправку, меняя положение каркаса. Это нужно для того, чтобы каркас лучше обмялся по форме деревянного бруска — оправки. 

    Далее изготовим щечки каркаса. Каждая щечка состоит из двух, разных по выкройкам, картонных половинок. Форма выкройки видна из рисунка. Размеры щечки,наружные:  d = 59 мм., e = 70 мм. Внутренние размеры отверстия щечки вырезаются  по размерам каркаса

    В середине щечки, лезвием, вырезаются два клапана и отгинаются в одну сторону, по рисунку. У каждой половинки щечки клапаны прорезаны по разным выкройкам.        При склеивании двух половинок получается щечка с четырьмя клапанами. Нужно изготовить для каркаса две такие щечки. 

   Далее надеваем каркас на оправку.  Надеваем на каркас с двух сторон щечки. Предварительно промазываем клеем места соединения щечек и каркаса. Сверху можно, для крепости, проклеить одним слоем бумажной ленты по внутренней ширине каркаса, прижав клапаны к каркасу. Желательно все эти действия проводить пока каркас еще сырой и все склеиваемые части можно плотно прижать друг к другу.

    Чтоб щечки легли хорошо и ровно, нужно дополнительно скрепить склеиваемый каркас двумя, вырезанными из фанеры, дощечками через отверстие в оправке. Плотно обжать щечки к каркасу и дощечкам. Когда это все высохнет, получится довольно крепкий и удобный для намотки  каркас.

   На щечках каркаса шилом протыкаются отверстия под выводы обмоточного провода. 

    В таком собранном виде и производится намотка провода на каркас.

Далее смотреть статью:  «Как намотать трансформатор на Ш — образном сердечнике» 


strong

Как рассчитать трансформатор 220/36 вольт

 Как рассчитать  трансформатор 220/36 вольт.



    В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электичческим током.
В этих  случаях  следует пользоваться электрооборудованием рассчитанным на пониженное напряжение питания, не более 42 вольт.

    Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт.
    Рассчитаем и изготовим однофазный  силовой трансформатор 220/36 вольт, с выходным напряжением 36 вольт с питанием от электрической сети переменного тока напряжением 220 вольт.

    Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт. Такие лампочки с  цоколем под обыкновенный электропатрон продаются в магазинах электротоваров.
Если вы найдете лампочку на другую мощнось, например на 40 ватт, нет ничего страшного —  подойдет и она. Просто трансформатор будет выполнен с запасом по мощности.
 

Сделаем упрощенный расчет трансформатора 220/36 вольт.

   Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60 ватт 

Где:
Р_2
– мощность на выходе трансформатора, нами задана 60 ватт;

U
_2 — напряжение на выходе трансформатора, нами задано 36 вольт;

I
_2 — ток во вторичной цепи, в нагрузке.

КПД  трансформатора  мощностью до 100 ватт обычно равно не более  η = 0,8.
КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором  от сети с учетом потерь:

Р_1 = Р_2 /  η  = 60 / 0,8 = 75 ватт.

   Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения   Р_1,   мощности потребляемой от сети 220 вольт,  зависит площадь поперечного сечения магнитопровода S.

   Магнитопровод – это сердечник  Ш – образной или  О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода. 

   Площадь поперечного сечения  магнитопровода рассчитывается по формуле:

 S = 1,2 · √P_1.  

  Где:
S — площадь в квадратных сантиметрах,

P
_1 — мощность первичной сети в ваттах.

 S = 1,2 · √75 = 1,2 · 8,66 = 10,4  см².

По значению   S определяется число витков w на один вольт по формуле:

w = 50/S   

 В нашем случае площадь сечения сердечника равна  S = 10,4 см.кв.

 w = 50/10,4 = 4,8  витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U_1 · w = 220 · 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U_2 · w = 36 · 4,8 =  172.8 витков,

округляем до 173 витка.

   В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

 Величина тока в первичной обмотке трансформатора:

I_1 = P_1/U_1 = 75/220 = 0,34 ампера.

Ток во вторичной обмотке трансформатора:

I_2 = P_2/U_2 = 60/36 = 1,67 ампера.

   Диаметры проводов первичной и вторичной  обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока,  для медного провода, принимается 2 А/мм² . 

   При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле:  d = 0,8√I .

Для первичной обмотки диаметр провода будет:

d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм.     Возьмем 0,5 мм.

Диаметр провода для вторичной обмотки:

d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм.      Возьмем 1,1 мм.

   ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА, то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

    Площадь поперечного сечения провода определяется по формуле:

s = 0,8 · d².    

где: d — диаметр провода.

   Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм. 

Площадь поперечного сечения провода диаметром 1,1 мм. равна:

s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97  мм².  

Округлим до 1,0 мм².

   Из таблицы выбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².

   Например, это два провода диаметром по   0,8 мм. и площадью по 0,5 мм²

Или два провода:
 - первый диаметром 1,0 мм. и площадью сечения 0,79 мм²,
— второй диаметром 0,5 мм. и площадью сечения 0,196 мм².
что в сумме дает: 0,79 + 0,196 = 0,986 мм².

   Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.

    Получается как бы один провод с суммарным поперечным сечением двух проводов.

 Смотрите статьи:
— «Как намотать трансформатор на Ш-образном сердечнике».
— «Как изготовить каркас для Ш — образного сердечника».


Провод с высоким электрическим сопротивлением

Провод с высоким электрическим сопротивлением

Таблица зависимости сопротивления провода от материала и диаметра.
Страница 3 из 612345...Последняя »