Виктор Егель

Страница 6 из 6« Первая...23456

Электрический ток в проводниках первого рода (металлах)

Из школьного курса по физике электрический ток это: направленное движение электронов в проводнике или направленное движение ионов в электролите.
В школьном курсе химии мы изучали строение вещества. Атом любого вещества состоит из ядра и движущихся вокруг него электронов.

 Каждый электрон имеет заряд. Количество электронов движущихся вокруг ядра у каждого вещества разное. Ядро имеет в своем составе нейтроны (заряд= 0) и протоны (заряд = +1). Количество протонов в каждом атоме равно количеству электронов движущихся вокруг ядра.
 Таким образом сумма положительных зарядов протонов ядра равна сумме отрицательных зарядов электронов и суммарный заряд атома равен нулю. Это состояние атома сохранится до тех пор, пока на него не подействуют посторонние силы.
Силы эти: электрические и магнитные поля, свет, температура, радиация и др.

Рассмотрим пример возникновения электрического тока в проводнике (в металле).
Представим длинный проводник наполненный атомами по всей длине.
 Приложим к проводнику электрический заряд — разность потенциалов батареи
гальванических элементов. Один конец металлического проводника подключен к плюсу (+) батареи, другой к минусу (-).  Электрон (атома-1), имеющий отрицательный заряд, под действием разности потенциалов, соскочит с орбиты (атома-1) к положительному полюсу (+) батареи. Сам же атом-1, отдав электрон, в свою очередь, окажется положительно заряженным. Он притянет электрон соседнего атома-2 и зарядит его положительно.

Произойдет цепочка передачи электрона до отрицательного полюса батареи. Недостающий электрон последний атом получит от батареи.
Количество передаваемых электронов в цепи (электрический ток) зависит от напряжения электрической батареи и от физических свойств вещества проводника. Заметим, что прохождение электрического тока по проводнику первого рода (металлам), не связано с химическими изменениями этого вещества.

Если за время в 1 секунду по проводнику пройдет количество электронов равное     (это заряд в 1 кулон)  то это значит, что в цепи протекает ток в 1 ампер. В данном случае электрическая батарея является источником электронов на отрицательном полюсе и потребителем электронов на положительном полюсе. Обеспечивается это за счет химической реакции проходящей в самой батарее.
Однако направление движения электрического тока в проводнике принято считать от положительного полюса к отрицательному полюсу.

И еще! Если ток проходит путь от одного конца проводника до другого (это может быть миллиметры, метры, километры), то сам электрон проходит путь всего — лишь с орбиты своего атома на орбиту соседнего атома за очень короткое время. Оттого и скорость прохождения электрическаго тока в металлах  очень высокая и равна 300000 км/с.

Электрическое сопротивление

Вещество (металл) из которого сделан проводник влияет на прохождение через него электрического тока и характеризуется с помощью такого понятия, как электрическое сопротивление.Электрическое сопротивление зависит от размеров проводника, его материала, температуры:

    • -чем длиннее провод, тем чаще движущиеся свободные электроны (носители тока) будут сталкиваться на своем пути с атомами и молекулами вещества — сопротивление проводника возрастaет;
    • — чем больше поперечное сечение проводника, тем свободным электронам становится просторнее, число столкновений уменьшается — электрическое сопротивление проводника уменьшается.

Вывод: чем длиннее проводник и меньше его сечение, тем больше его сопротивление и наоборот - чем провод короче и  толще, тем сопротивление его меньше, а проводимость (способность пропускать эл. ток) его лучше.

Упрощенно, зависимость сопротивления проводника от температуры можно представить так: электроны, движущиеся вдоль проводника, сталкиваются с атомами и молекулами самого проводника и передают им свою энергию. В результате проводник нагревается, тепловое, беспорядочное движение атомов и молекул увеличивается. Это еще больше тормозит основной поток электронов вдоль проводника. Этим объясняется увеличение сопротивления проводника прохождению электрического тока при нагреве.

При нагреве или охлаждении проводников — металлов, сопротивление их соответственно увеличивается или уменьшается, из расчета 0,4 % на каждый 1 градус. Это свойство металлов используется при изготовлении датчиков температуры.

Полупроводники и электролиты имеют противоположное свойство, чем проводники — с увеличением температуры нагрева их сопротивление уменьшается.

 За единицу измерения электрического сопротивления принят 1 Ом (в честь ученого Г.Ома).      Сопротивлению в 1 Ом  равен  участок электрической цепи, по которому проходит ток в 1 Ампер при падении на нем напряжения в 1 Вольт,

Иногда пользуются величиной обратной электрическому сопротивлению. Это электрическая проводимость, обозначается буквой g или G – Сименс (в честь ученого Э.Сименса).

Электрической проводимостью называется способность вещества пропускать через себя электрический ток. Чем больше сопротивление R проводника, тем меньше его проводимость G и наоборот. 1 Ом = 1 Сим

Производные единицы:

1Сим = 1000мСим,
1Сим = 1000000мкСим.

Когда необходимо посчитать общее сопротивление последовательно соединенных проводников, то удобнее оперировать с Омами. если вычисляется общее сопротивление параллельно соединенных проводников, удобней считать в Симах, а потом преобразовать в Омы.

Наибольшей проводимостью обладают металлы: серебро, медь, алюминий и др., а также растворы солей, кислот и др.
Наименьшая проводимость (наибольшее сопротивление) у изоляторов: слюда, стекло, асбест, керамика и т.д...

Чтобы удобнее проводить расчеты электрического сопротивления проводников, изготовленных из различных металлов, ввели понятие удельного сопротивления проводника.
Сопротивление проводника длиной 1 метр, сечением 1 мм. кв. при температуре + 20 градусов, это будет удельное сопротивление проводника «p».

Удельные сопротивления проводников некоторых металлов приведены в таблице.

Из таблицы видно: из металлов, наилучшей проводимостью обладает серебро. Но оно очень дорого и в качестве проводников используется в исключительных случаях.

Медь и алюминий — наиболее распространенные материалы в электротехнике. Из них изготавливаются провода и кабели, электрические шины и пр. Вольфрам, константан, манганин используются в различных нагревательных приборах, при изготовлении проволочных резисторов.

Используя провода и кабели в электроустановках, необходимо учитывать их сечение, чтобы предотвратить их нагрев и, как правило, порчу изоляции, а также уменьшить падение напряжения и потерю мощности при передаче электрической энергии от источника до потребителя.

Ниже приведена таблица допустимых величин тока в проводнике в зависимости от его диаметра (сечения в мм.кв.), а так же сопротивление 1 метра провода, изготовленного из разных материалов.

Примеры расчето внекоторых электрических цепей можно посмотреть здесь.

Введение

Представление о электричестве люди имели уже давно. Впервые это явление было замечено еще учеными древней Греции, оно наблюдалось при натирании замшей янтарных предметов. Янтарь по-гречески называется электрон. Поэтому стали говорить об электрических явлениях., о появлении в телах, при натирании, электричества, или электрического заряда.

Исследованиями  таких ученых как, М.Ломоносов, А.Попов, Ш.Кулон, А.Вольта, А.Ампер, Г.Ом, Г.Кирхгоф и многих других, появились законы, объясняющие электрические явления. Появились первые электрические приборы, источники и приемники электрической энергии, применяемые в промышленности. Образовались новые направления, области применения электричества: электротехника, радиотехника, электроника, электросвязь. Электричество прочно вошло и в наш дом.

Все вещества делятся на три основные группы: проводники, полупроводники и диэлектрики.

   Проводники.Очень часто электроны (особенно те, которые слабо связаны с ядром атома) могут покинуть свою орбиту, перейти в междуатомное пространство. Tакие электроны называются свободными. Вещества, в междуатомном пространстве которых всегда есть свободные электроны, относятся к проводникам первого рода. и ток в проводнике создается свободными электронами. К ним относятся все металлы. На практике это провода, жилы кабелей, контакты реле, нити эл. ламп и т.д.

Растворы кислот, солей и щелочей (электролиты), относятся к проводникам второго рода. В электролите непрерывно образуются положительные и отрицательные ионы. Электрический ток в электролите создается не свободными электронами, а ионами.

Из школьного курса по физике электрический ток это: направленное движение электронов в проводнике или направленное движение ионов в электролите. Электрический ток существует в проводниках, полупроводниках, так же в газах, вакууме и др.

    Полупроводники. В настоящее время широчайшее применение нашли полупроводники. В основном это кристаллы кремния и германия. В обычных условиях свободных электронов в этих веществах очень мало и они плохо проводят электрический ток.

Но при нагревании или под действием света, электрических или магнитных полей, радиоактивного излучения и других факторов количество свободных электронов в полупроводнике возрастает и он начинает проводить электрический ток. Это, так называемая, электронная или дырочная проводимость — характерный признак полупроводников.

На практике это полупроводниковые диоды, транзисторы, микросхемы и многое другое.

     Диэлектрики. В обычных условиях в диэлектрике нет ни свободных электронов ни ионов, а значит и ток через них не проходит. На практике это такие вещества, как резина, стекло, слюда, фарфор и множество других.

Диэлектрики широко применяются в электротехнике в качестве изоляторов (прокладки, оплетки проводов и кабелей, каркасы электрических узлов и др.). Если к диэлектрику приложить очень высокое напряжение, может произойти электрический пробой и он превратится в проводник — потеряет свои диэлектрические свойства.

С пробоями в изоляции проводов, конденсаторов, прогары в прокладках между эл. шинами, пробой диодов и транзисторов и др. все довольно часто сталкивались.

Страница 6 из 6« Первая...23456