пульсирующее напряжение

Двухполупериодная схема выпрямителя

Двухполупериодная схема выпрямителя.



style="display:inline-block;width:468px;height:60px"
data-ad-client="ca-pub-5076466341839286"
data-ad-slot="8969066382">


   Самая простая двух-полупериодная схема выпрямления переменного тока получается из двух однополупериодных схем.  

    Вторичная обмотка трансформатора состоит из двух одинаковых обмоток II и III, каждая из которых выдает нужное переменное напряжение Uвых.
Через диоды проходит только положительная полуволна синусоидального переменного тока.

   Работает поочередно или обмотка II и диод VD1, или обмотка III и диод VD2. Средняя величина тока проходящего через каждую обмотку и диод, в двухполупериодном выпрямителе, равна половине выходного тока выпрямителя. В этом случае обмотки можно мотать проводом с вдвое меньшим сечением и применять диоды с меньшим допустимым током.

   Такие схемы двухполупериодного выпрямления предпочтительны тогда, когда на выходе выпрямителя нужно получить большой ток (5 — 10 ампер и более) при небольших напряжениях (5 – 20 вольт).
    Желательно применять германиевые диоды (на них меньше падение напряжения, чем на кремниевых диодах) они меньше греются. Мощные диоды, при больших токах нагрузки, нужно обязательно ставить на радиатор.
    При таком способе включения, оба диода можно ставить на один радиатор, так как аноды (плюсы) их имеют вывод на корпус, под гайку. Конструктивно это очень удобно. Два диода и радиатор составляют одну конструкцию и ее ставят на одну изолирующую подставку.
    Форма выходного напряжения двухполупериодного выпрямителя представляет собой пульсирующее напряжение: полусинусоиды положительной и, перевернутой вверх, полусинусоиды отрицательной.

   На рисунках приведены варианты таких схем получения, на выходе выпрямителя, выходного напряжения положительной (рис. 1) или отрицательной (рис. 2) полярности относительно корпуса.

   Достоинства такой схемы двухполупериодного выпрямления против одно полупериодной схемы:

— трансформатор работает без токов подмагничивания;

— частота пульсаций на выходе выпрямителя f = 100 герц;

 - коэффициент пульсаций существенно меньше.

Недостатки такой схемы:

  •    - обратное напряжение на каждом диоде превышает выходное напряжение выпрямителя Uвых. в два раза (напряжение обоих обмоток складывается).

   В случае, если нет возможности достать диоды на рассчитываемый ток, можно включать их параллельно по два, а то и по три в каждом плече, как на рисунке 3.


    В этой схеме все диоды можно ставить на один радиатор, без изоляционных прокладок. Резисторы ставятся для того, чтобы уравнять внутренние «тепловые» сопротивления диодов.
    Резисторы должны быть равны между собой и иметь величину соответствующую динамическому сопротивлению диода — от 0,2 до 1 Ом, и мощность 1 ватт и более.
    Недостаток схемы:  – большая потеря мощности на резисторах.

   Разберем на примере применение данных схем.
Пусть нам нужно построить выпрямитель на напряжение 12 вольт и номинальный ток до 15 ампер.

    Рассмотрим сначала схему на рис. 1. Каждая вторичная обмотка трансформатора (обмотки II и III) должна быть рассчитана на переменное напряжение 13 – 14 вольт, с учетом падения напряжения на самой обмотке и самом сопротивлении диода.

Эти обмотки включаются последовательно – конец обмотки II с началом обмотки III. Средняя точка – общий, минусовой вывод. Два диода соединенные анодами вместе – это плюсовой вывод.


    Выходной ток двухполупериодного выпрямителя состоит из двух полуволн. Каждая из полуволн, за один период проходит сначала по одной половинке и диоду, затем по второй и диоду и имеет величину по 15 ампер. После диодов они сливаются вместе и имеют во времени форму пульсирующего напряжения.
    В каждой паре (обмотка и диод) ток, в течении одного периода, половину периода идет, половину периода не идет. Электрическая мощность, проходящая по каждой паре (обмотка — диод) в течение периода, равна половине общей мощности за это время. А следовательно, средний ток через каждую пару (обмотка — диод) равен, как бы, половине общего тока.
    Сечение провода вторичных обмоток и максимально допустимый ток диодов так же подбирается из этого расчета.
    Из этого следует, что в нашем примере сечение провода вторичных обмоток может быть рассчитано на ток в 7,5 ампер, то есть в два раза меньше. Диоды подбираются на ток до 10 ампер (всегда берутся с запасом), а не 7,5 ампер.
    Те же самые рекомендации по сечению провода относятся к схеме на рис. 2 и рис.3.

   Пример на схеме рис.3 относится к случаю, когда у нас нет в наличии диодов рассчитанных на ток 10 ампер, а есть диоды на 5 ампер. В этом случае ставим 4 диода: в «плечо» по два диода в параллель.Через каждый диод будет протекать ток  15 : 4 = 3,75 ампера.
    Определим величину омического сопротивления резисторов R1 – R4. Падение напряжения на диоде, при протекании через него максимального тока, равно около Uд = 1,0 вольта. Его динамическое сопротивление при токе I = 3,75 ампер будет примерно равно:

R = Uд : I = 1,0 : 3,75 = 0,266 Ом.
 Сопротивление каждого из резисторов R1 – R4 должно быть 1 – 2 Uд = 0,26 – 0,5 Ома.R1 – R4 д
При резисторе R = (0,26 — 0,5) Ома падение напряжения на нем будет:
   U = R х I = (0,26 — 0,5) х 3,75 = от 0,975 до 1,875 вольта.
    Электрическая мощность выделяемая на каждом резисторе равна:
   P = I х U = 3,75 (0,95 – 1,875) = от 3,56 до 7,03 ватта.

Такие резисторы изготавливают из толстого высокоомного провода, рассчитанного на ток 3,75 ампер и сильное выделение тепла.

   Это довольно существенная потеря мощности на резисторах.
 Такова расплата за использование не соответствующих току диодов.
     Если же не ставить эти уравнительные резисторы, одни диоды будут работать с перегрузкой и сильно греться (тепловой пробой), другие будут работать с малыми токами.


style="display:inline-block;width:468px;height:60px"
data-ad-client="ca-pub-5076466341839286"
data-ad-slot="8969066382">

Трансформаторные или импульсные преобразователи напряжений и токов

 

Трансформаторные или импульсные преобразователи напряжения и тока. Что лучше?



style="display:inline-block;width:728px;height:90px"
data-ad-client="ca-pub-5076466341839286"
data-ad-slot="4818068385">

   Существует много различных схем выпрямителей — преобразователей напряжений и токов. Они предназначены для преобразования переменного напряжения синусоидальной или прямоугольной формы, сначала в пульсирующее напряжение, а затем в постоянное напряжение заданной величины.
    В зависимости от назначения выпрямителя, его необходимой мощности, от параметров, предъявляемых к выходному напряжению, выбираются рабочие схемы выпрямителей — приобразователей напряжений.
    Они могут быть как очень простыми и содержать минимум деталей, так и довольно сложными и содержать электронные схемы управления процессом выпрямления и стабилизации выпрямленного напряжения.
    В быту, при изготовлении домашних самоделок, используются в основном выпрямители, преобразующие переменное напряжение бытовой сети 220 вольт в любое постоянное напряжение.

   Раньше, да и сейчас тоже, получение постоянного напряжения любой величины из переменного напряжения бытовой сети 220 вольт, осуществлялось по классической схеме.

   Последовательность преобразования:
 — бытовая сеть переменного напряжения 220 вольт 50 герц,
– трансформатор, преобразующий его в переменное напряжение другой величины той же частоты,
– выпрямительные диоды, преобразующие переменное напряжение в пульсирующее напряжение той же величины ,
– низкочастотный фильтр, состоящий из емкости и индуктивности, далее, если необходимо,
 — стабилизатор напряжения.
    На выходе всей этой длинной цепи получается постоянное напряжение заданной величины.

Преимущество схемы:
 — простота конструкции,
 — используются недорогие детали,
 — большой запас надежности при аварийной ситуации.

Недостатки схемы:
 — большой вес и габариты трансформатора, дросселя и конденсаторов, а в целом и всего выпрямителя;
 — низкий КПД, не превышающий 60%.

На рисунке простейшая схема выпрямителя — преобразователя напряжения с простым стабилизатором напряжения.

   Здесь на выходе трансформатора полученное низкое переменное напряжение выпрямляется диодным мостом. Получается пульсирующее напряжение, которое с помощью конденсатора сглаживается. Затем это напряжение стабилизируется транзисторным стабилизатором.

    В настоящее время повсеместно внедряется другая схема выпрямителя — преобразователя  напряжений — импульсный блок питания ИБП.

   Последовательность преобразования:
 — бытовая сеть переменного напряжения 220 вольт ,
– выпрямительные диоды и конденсатор. Получается постоянное напряжение, величиной в 310 вольт. Далее, с помощью генератора, работающего на частоте 15 – 150 килогерц, это постоянное напряжение преобразуется в переменное напряжение прямоугольной формы.

   С помощью ферритового трансформатора, трансформируется в необходимое переменное напряжение прямоугольной формы.
    Это переменное прямоугольное напряжение выпрямляется с помощью диодного мостика, фильтруется конденсатором и индуктивностью.
 На выходе получается постоянное напряжение заданной величины.

Преимущества схемы:
 — небольшие габаритные размеры деталей и в целом всего выпрямителя;
 — высокий КПД, доходящий до 90%;

Недостатки схемы:
 — дорогие комплектующие детали (транзисторы, конденсаторы, феррит);
 — из-за низкой надежности при аварии, необходимость применять сложные схемы защиты;
 — сильные электромагнитные поля излучения.

   На рисунке простая схема выпрямителя — преобразователя напряжения -  импульсного блока питания, ИБП, без цепей управления переключением транзисторов.

 Такая схема импульсного блока питания, и ей подобные,  это уже настоящая реальность...



style="display:inline-block;width:728px;height:90px"
data-ad-client="ca-pub-5076466341839286"
data-ad-slot="4818068385">