
style="display:inline-block;width:728px;height:90px"
data-ad-client="ca-pub-5076466341839286"
data-ad-slot="2660907582">
♥ Наибольшее распространение получили двухтактные источники вторичного электропитания, хотя и имеют более сложную электрическую схему по сравнению с однотактными. Они позволяют получать на выходе значительно большую выходную мощность при высоком КПД.
Схемы двухтактных преобразователей-инверторов имеют три вида включения ключевых транзисторов и первичной обмотки выходного трансформатора: полумостовая, мостовая и с первичной обмоткой имеющей отвод от середины.
♥ Полумостовая схема построения ключевого каскада.
Ее особенностью является включение первичной обмотки выходного трансформатора в среднюю точку емкостного делителя С1 — С2.
♥ Амплитуда импульсов напряжения на переходах транзисторов эмиттер-коллектор Т1 и Т2 не превышает Uпит величины питающего напряжения. Это позволяет использовать транзисторы с максимальным напряжением Uэк до 400 вольт.
В то же время напряжение на первичной обмотке трансформатора Т2 не превышает значения Uпит/2, потому, что снимается с делителя С1 — С2 (Uпит/2).
Управляющее напряжение противоположной полярности подается на базы ключевых транзисторов Т1 и Т2 через трансформатор Тр1.
♥ В мостовом преобразователе емкостной делитель (С1 и С2) заменен транзисторами Т3 и Т4. Транзисторы в каждом полупериоде открываются попарно по диагонали (Т1, Т4) и (Т2, Т3).
Напряжение на переходах Uэк закрытых транзисторов не превышает напряжения питания Uпит. Но напряжение на первичной обмотке трансформатора Тр3 увеличится и будет равно величине Uпит, что повышает КПД преобразователя. Ток же через первичную обмотку трансформатора Тр3 при той же мощности, по сравнению с полумостовой схемой, будет меньше.
Из за сложности в наладке цепей управления транзисторов Т1 – Т4, мостовая схема включения применяется редко.
♥ Схема инвертора с так называемым пушпульным выходом наиболее предпочтительна в мощных преобразователях-инверторах. Отличительной особенностью в данной схеме является то, что первичная обмотка выходного трансформатора Тр2 имеет вывод от середины. За каждый полупериод напряжения поочередно работает один транзистор и одна полуобмотка трансформатора.
♥ Данная схема отличается наибольшим КПД, низким уровнем пульсаций и слабым излучением помех. Достигается это за счет уменьшения тока в первичной обмотке и уменьшения рассеиваемой мощности в ключевых транзисторах.
Амплитуда напряжения импульсов в половине первичной обмотки Тр2 возрастает до значения Uпит, а напряжение Uэк на каждом транзисторе достигает значения 2 Uпит (ЭДС самоиндукции + Uпит).
Необходимо использовать транзисторы с высоким значением Uкэmах, равным 600 – 700 вольт.
Средний ток через каждый транзистор равен половине тока потребления от питающей сети.
♥ Особенностью двухтактных схем с самовозбуждением является наличие обратной связи (ОС) с выхода на вход, по току или по напряжению.
♥ В схеме обратной связи по току обмотка связи w3 трансформатора Тр1 включена последовательно с первичной обмоткой w1 выходного трансформатора Тр2. Чем больше нагрузка на выходе инвертора, тем больше ток в первичной обмотке Тр2, тем больше обратная связь и больше базовый ток транзисторов Т1 и Т2.
Если нагрузка меньше минимально допустимой, ток обратной связи в обмотке w3 трансформатора Тр1 недостаточен для управления транзисторами и генерация переменного напряжения срывается.
Иными словами, при пропадании нагрузки — генератор не работает.
♥ В схеме обратной связи по напряжению обмотка обратной связи w3 трансформатора Тр2 соединена через резистор R с обмоткой связи w3 трансформатора Тр1. По этой цепи осуществляется обратная связь с выходного трансформатора на вход управляющего трансформатора Тр1 и далее в базовые цепи транзисторов Т1 и Т2.
♥ Обратная связь по напряжению слабо зависит от нагрузки. Если же на выходе будет очень большая нагрузка (короткое замыкание), напряжение на обмотке w3 трансформатора Тр2 снижается и может наступить такой момент, когда напряжение на базовых обмотках w1 и w2 трансформатора Тр1 будет недостаточно для управления транзисторами. Генератор перестанет работать .
При определенных обстоятельствах это явление может быть использовано как защита от короткого замыкания на выходе.
♥ На практике широко применяются обе схемы с обратной связью ОС как по току, так и по напряжению.
♥ Для примера, рассмотрим работу наиболее распространенной схемы преобразователя-инвертора – полумостовой схемы.
Схема состоит из нескольких независимых блоков:
♥ Сразу после включения питания 220 вольт начинает работать устройство запускающих импульсов, представляющий из себя генератор пилообразного напряжения (R2, С2, Д7). От него запускающие импульсы поступают на базу транзистора Т2. Происходит запуск автогенератора.
♥ Ключевые транзисторы открываются поочередно и в первичной обмотке выходного трансформатора Тр2, включенной в диагональ моста (Т1,Т2 – С3,С4), образуется переменное напряжение прямоугольной формы.
С вторичной обмотки трансформатора Тр2 снимается выходное напряжение, выпрямляется диодами Д9 — Д12 (двухполупериодное выпрямление) и сглаживается конденсатором С5.
На выходе получается постоянное напряжение заданной величины.
♥ Трансформатор Т1 используется для передачи импульсов обратной связи от выходного трансформатора Тр2 на базы ключевых транзисторов Т1 и Т2.
♥ Двухтактная схема ИБП имеет ряд преимуществ перед однотактной схемой:
♥ И еще одно замечание в пользу двухтактной схемы!!
Сравним работу двухтактного и однотактного автогенераторов с одинаковой нагрузкой.
♥ Каждый ключевой транзистор Т1 и Т2 за один такт работы генератора используется всего половину времени (одну полуволну), вторую половину такта «отдыхает». То есть вся вырабатываемая мощность генератора, делится пополам между обоими транзисторами и передача энергии в нагрузку идет непрерывно (то от одного транзистора, то от другого), во время всего такта. Транзисторы работают в щадящем режиме.
♥ В однотактном же генераторе накопление энергии в ферритовом сердечнике происходит во время половины такта, во второй половине такта идет ее отдача в нагрузку.
style="display:inline-block;width:728px;height:90px"
data-ad-client="ca-pub-5076466341839286"
data-ad-slot="2660907582">
♥ Импульсные источники вторичного электропитания нашли широкое распространение в бытовой и промышленной аппаратуре. Импульсные источники электропитания вырабатывают постоянные и переменные напряжения, необходимые для электропитания блоков аппаратуры , путем ключевого преобразования выпрямленного сетевого напряжения 220 вольт и 50 герц.
♥ Преимущество ИБП по сравнению с традиционным трансформаторным источником питания обеспечивается заменой силового трансформатора, работающего на частоте промышленной сети 50 герц, малогабаритным импульсным трансформатором, работающим на частотах 16 – 40 килогерц, а также использованием импульсных методов стабилизации вторичных напряжений взамен компенсационных. Это приводит к снижению веса и габаритов изделия в 2-3 раза и повышению КПД источника до 80 — 90 %, а значит, дополнительно экономит электрическую энергию.
♥ Ключевые каскады преобразователя напряжения строятся по однотактной и двухтактной схемам.
В старых транзисторных телевизорах, в силу их специфического схемного построения, использовались однотактные ИБП.
Однотактные ИБП используются также в устройствах малой мощности до 50 ватт и более.
Наглядным примером являются различные зарядные устройства для питания мобильных телефонов, ноутбуков и много другого. Они нашли широкое распространение из-за простоты изготовления, малых размеров и высокой надежности.
♥ На рисунке изображена плата зарядного устройства от мобильного телефона. Она преобразует переменное напряжение 110 – 220 вольт в постоянное напряжение 5 вольт.
Увеличение мощности однотактных ИБП оказывается неэффективным из-за роста габаритных размеров и массы импульсного трансформатора (в сравнении с двухтактной схемой) и повышенных требований к ключевому транзистору (высокие напряжение и ток).
Двухтактные ИБП применяются при мощностях от нескольких ватт до сотен ватт, ввиду их простоты и экономичности.
♥ Пример использования двухтактного преобразователя:
Энергосберегающие лампы мощностью 20 ватт.
Мощные компьютерные блоки питания
♥ Однотактная схема ИБП представляет из себя преобразователь переменного напряжения сети (или постоянного напряжения аккумуляторной батареи) одной величины, в постоянное (выпрямленное) напряжение другой величины.
Генератор ВЧ напряжения, частотой 20 – 100 килогерц, может быть с самовозбуждением (автогенератор) или с внешним возбуждением (дополнительный генератор).
В маломощных (до10 ватт) и простых ИБП в основном применяется самовозбуждающийся автогенераторный преобразователь.
♥ Смотрите схему простого однотактного, с самовозбуждением, импульсного источника питания.
♥ Однотактная схема ИБП состоит из выпрямителя (Д1 – Д4) со сглаживающим конденсатором С1. В нем напряжение сети 220 вольт преобразуется в постоянное напряжение 310 вольт. Затем с помощью генератора импульсного напряжения (транзистор Т, трансформатор Тр), вырабатываются импульсы прямоугольной формы. С вторичной обмотки прямоугольные импульсы поступают на выпрямитель (Д6) со сглаживающим конденсатором (С5), получается постоянное напряжение.
Само преобразование напряжения происходит на ферритовом трансформаторе. Выходное напряжение зависит от соотношения витков в первичной и вторичной обмотках трансформатора.
♥ Существенным недостатком однотактной схемы преобразователя является большое напряжение самоиндукции, наводимое в первичной обмотке трансформатора, превосходящее входное напряжение питания Eп в 2-4 раза. В таких схемах нужны транзисторы, имеющие максимальное напряжение коллектор — эмиттер равное 700-1000 вольт.
Применяют различные способы снижения выбросов напряжения на коллекторе транзистора:
— включаются RC цепочки (С2, R3) параллельно первичной обмотке трансформатора и конденсатор C4 в цепи вторичной обмотки.
— при использовании дополнительных устройств стабилизации выходного напряжения, например широтно – импульсной модуляции (ШИМ), возможна работа однотактного ИБП при изменении подключаемой нагрузки в широких пределах (от Р=0 до Pmax) при неизменном выходном напряжении.
Применяются и другие технические приемы защиты ключевого транзистора от перенапряжения.
Плюсы:
— один ключевой транзистор в схеме,
— схема проще, чем двухтактная.
Минусы:
— намагничивание ферритового сердечника происходит только в одной полярности, (пассивное размагничивание сердечника), вследствие чего не полностью используется магнитная индукция сердечника. Не полностью используется ферритовый сердечник по мощности. Необходим зазор в магнитном сердечнике.
— при среднем токе потребления от сети, ток через транзистор больше в n-раз (зависит от скважности импульсов) и потому необходимо выбирать транзистор с заведомо большим максимальным током.
— возникают большие перенапряжения на элементах схемы, достигающие 700 – 1000 вольт.
— необходимо применять специальные меры защиты от перенапряжения на элементах схемы.
♥ Двухтактная автогенераторная схема ИБП состоит из выпрямителя входного переменного напряжения 220 вольт, устройства запуска генератора, генератора прямоугольных импульсов и выпрямителя выходного напряжения с конденсатором фильтра.
На рисунке изображена простая наиболее распространенная двухтактная схема автогенераторного, импульсного преобразователя – инвертора, полумостовая схема.
По сравнению со схемой однотактного автогенератора, двухтактный автогенератор имеет более сложную схему.
Добавляется:
— устройство автоматического запуска генератора импульсов;
— еще один ключевой транзистор;
— дополнительный трансформатор Тр1, для управления ключевыми транзисторами;
— два конденсатора полумоста (С3, С4);
— два диода (Д5, Д8) для защиты транзисторов от пробоя.
♥ Двухтактная схема ИБП имеет ряд преимуществ перед однотактной схемой:
— ферритовый сердечник выходного трансформатора Тр2 работает с активным перемагничиванием (наиболее полно используется магнитный сердечник по мощности);
— напряжение коллектор – эмиттер Uэк на каждом транзисторе не превышает напряжение источника питания 310 вольт;
— при изменении тока нагрузки от I = 0 до Imax, выходное напряжение изменяется незначительно;
— выбросы высокого напряжения в первичной обмотке очень малы, соответственно меньше уровень излучаемых помех
♥ Несмотря на повышенную сложность двухтактная схема, в сравнении с однотактной, проще в настройке и эксплуатации.
style="display:inline-block;width:728px;height:90px"
data-ad-client="ca-pub-5076466341839286"
data-ad-slot="2660907582">